

An Approach to Aortic Outflow Velocity Image Analysis

H. Kalinić, S. Lončarić, M. Čikeš, A. Baltabaeva*, C. Parsai*, J. Šeparović, I. Čikeš, G.R. Sutherland*, B. Bijnens[#]

> University of Zagreb, Croatia *St. George's Hospital, London, UK #Pompeu Fabra University, Barcelona, Spain

- Detection of changes in cardiac function is important for diagnosis of coronary artery disease (CAD)
- DSE Dobutamine stress echocardiography is a non-invasive method used for quantification of ischaemia (E. Meri, G. R. Sutherland 2004, EHJ)
- Blood velocity and cardiac deformation are related (ed. Sutherland et al., 2006)

Aortic Outflow Profile Images

- Aortic outflow profile images show blood velocity
- Profile of the aortic outflow velocity provides information on global myocardial function

Hypothesis

 There is a correlation between the morphology and duration of aortic outflow velocity profile and myocardial function.

Proposed Method

A method for aortic outflow velocity profile image analysis

Data Acquisition

Cardiographic scanner (Vivid 7, GE Healthcare)

- Apical 5-chamber view
- Echopac workstation (GE Healthcare)
 - Images exported in Hierarchical Data Format (HDF)

Automatic Signal Extraction

Step one

- Projecting the image onto the y-axis
- Step two
 - Cross-correlation with negative sine

Automatic Signal Extraction

Step three

- Discarding the negative part of the signal
- Step four
 - Envelope detection by thresholding

Manual Signal Segmentation

Manual control and timing of the cycle

Signal Modeling

Filtering in Fourier domainPiecewise cubic approximation

Signal Feature Extraction

- 14 features
 - Rise time
 - Fall time
 - Harmonics
 - Area
 - Asymmetry measure
 - • •

Results: Signal Interpretation

Two signal features (fall time and symmetry factor)

Statistical Aortic Profile Atlas

- Step 1: Construction of statistical atlas of aortic outflow profiles for normal cases
- Step 2: Comparison of a new patient case with the atlas in order to:
 - Perform atlas-based segmentation
 - Measure similarity of a patient to normal cases

Construction of Atlas

- Step 1: Select a population of normal cases
- Step 2: Choose a case which is "most average" in the sense of maximizing a criterion of geometrical similarity to all other normal cases
 - Geometrical similarity is measured by the amount of scaling required to match one aortic profile image to another
- Step 3: Register all images to the reference image
- Step 4: Calculate average of all registered images

Aortic Profile Image Registration

- Mutual information used as image similarity measure
- Genetic algorithm used for maximization of mutual information
- Scaling image transformation
 - Image divided into 10 vertical bands, which are scaled vertically
 - Transformation defined by 10 scaling factors, one for each vertical band

Statistical Aortic Profile Model

Grayscale

Pseudocolored

Results

Results

- A method for quantification of Doppler traces has been developed
- Statistical analysis of results has identified a different profile in a subgroup of patients
- A method for construction of statistical atlas of aortic outflow images has been proposed